常见的数据分析工具有哪些(数据分析一般用的工具)

扫码手机浏览

本文目录一览:

常用的数据分析工具有哪些?

一、Excel

Excel可以说是被用得最多数据分析工具,无人不知,无人不晓。Excel的功能非常强大,从简单的表格制作,数据透视表,写公式,再到VBA语言,还有无数的插件供你使用。无论是初入职场的小白,还是经验丰富的数据分析师,Excel都是电脑里的必备工具之一。

二、BI工具

BI(Business Intelligence)即商业智能,BI工具是为了数据分析而生的,它诞生的起点就非常高,目标是把从业务数据到经营决策的时间缩短,利用数据来影响决策。常用的BI工具有Power BI、Tableau和亿信ABI,下面我们以亿信ABI为例,谈谈BI工具做数据分析有哪些优势。

三、数据分析编程语言

主流的数据分析编程语言是R和Python。与上面提到的Excel和BI工具相比,R/Python的使用门槛比较高,如果没有专业的IT知识,很难上手。但数据分析编程语言有它独特的优势。

关于常用的数据分析工具有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

常用的数据分析工具有哪些

虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。

Python

Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。

常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

R软件

R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。

SPSS

SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。

Excel

可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。

SAS软件

SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。

常见的数据分析工具

有EXCEL、MySQL、TABLEAU等。

1、Excel作为入门级的工具,同样也是最基础也是最主要的数据分析工具,Excel具备多种强大功能,除了创建表单,简单的数据清洗,还可以完成数据透视表,VBA等。

2、SQL是数据方向所有岗位的必备技能,其重要程度和Excel不相上下,SQL入门比较容易,概括起来就是在数据库里搜索调取想要的数据,在数据库里增删改查新旧数据。

3、Tableau的上手也非常快,只要拖拽处理过的数据后便会产出很多精美的可视化图像,数据可视化,用图表来识别问题并影响决策,在做数据分析和演讲时都是必不可少的加分项。

简介。

Excel它引进了“智能重算”的功能,当单元格数据变动时,只有与之相关的数据才会更新,而原先的制表软件只能重算全部数据或者等待下一个指令。同时,Excel还有强大的图形功能。

1993年Excel第一次被捆绑进Microsoft Office中时,Microsoft就对Microsoft Word和PowerPoint的界面进行了重新设计,以适应这款当时极为流行的应用程序。

从1993年,Excel就开始支持VBA是一款功能强大的工具,它使Excel形成了独立的编程环境。使用VBA和宏,可以把手工步骤自动化,VBA也允许创建窗体来获得用户输入的信息。但是,VBA的自动化功能也导致Excel成为宏病毒的攻击目标。

数据分析的常见工具有哪些?

数据分析软件有Excel、SAS、R、SPSS、Tableau Software。

1、Excel

为Excel微软办公套装软件的一个重要的组成部分,它可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。

2、SAS

SAS由美国NORTH CAROLINA州立大学1966年开发的统计分析软件。SAS把数据存取、管理、分析和展现有机地融为一体。SAS提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法。

3、R

R拥有一套完整的数据处理、计算和制图功能。可操纵数据的输入和输出,可实现分支、循环,用户可自定义功能。

4、SPSS

SPSS除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

5、Tableau Software

Tableau Software用来快速分析、可视化并分享信息。Tableau Desktop 是基于斯坦福大学突破性技术的软件应用程序。它可以以在几分钟内生成美观的图表、坐标图、仪表盘与报告。

数据分析的常见工具有哪些?

1、数据处理工具:Excel

数据分析师,在有些公司也会有数据产品经理、数据挖掘工程师等等。他们最初级最主要的工具就是Excel。有些公司也会涉及到像Visio,Xmind、PPT等设计图标数据分析方面的高级技巧。数据分析师是一个需要拥有较强综合能力的岗位,因此,在有些互联网公司仍然需要数据透视表演练、Vision跨职能流程图演练、Xmind项目计划导图演练、PPT高级动画技巧等。

2、数据库:MySQL

Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。

3、数据可视化:Tableau Echarts

如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观。

数据分析最常用的工具有哪些?

1、Excel

Excel作为最基础也数据分析工具,同时也是最主要的数据分析工具。Excel有多种强大功能,比如创建表单,数据透视表,VBA等等,Excel的系统十分强大,以至于没有任何一个分析工具是可以超越它的,可以根据自己的需求分析数据。

Excel可以满足绝大部分数据分析工作的需求,同时也提供友好的操作界面,对于具备基本统计学理论的用户来说Excel是比较容易上手的,就是它的处理的数据量较小。

2、SAS

SAS功能强大并且可以编程,很受高级用户的欢迎,也正因为此,它是比较难掌握的软件之一,在企业工作中用的比较多,需要编写SAS程序去处理数据。

3、SPSS

SPSS是世界上最早采用图形菜单的驱动界面统计软件,其最大的特点就是操作界面极为友好,输出的结果美观漂亮。用户只需掌握一定的Windows操作技能,精通统计的分析原理,就能够使用该软件为特定的科研工作而服务。SPSS采用了Excel表格的方式输入与管理数据,数据的接口较为通用,可以方便地从其他数据库当中读入数据。其统计的过程包括常用的、较为成熟的统计过程,可以完全满足非统计专业人士的工作需要。

4、SQL

SQL可以说是数据方向所有岗位都要掌握的工具,入门相对比较简单,概括起来就是增删改查,SQL需要掌握的知识主要包括数据的定义语言以及数据的控制语言和操控语言。在数据操控的过程中要能够理解SQL的语法顺序和执行顺序,理解SQL与各种join的 不同,熟练的掌握SQL的重要函数,想要入行数据分析,SQL是必要技能。

5、Python

Python是一种面向对象、解释型计算机程序设计的语言。它的语法简洁清晰,Python在数据分析和数据可视化等方面都显得比较活跃。

同时Python具有强大的编程能力,但是这种编程语言不同于R或者matlab,python有非常强大的数据分析能力,还可以利用Python进行爬虫,写游戏,和自动化运维,在这些领域当中有应用很广泛,这些优点就使得一种技术去解决所有的业务服务问题,体现了Python有利于各个业务之间的融合,使用Python,能够大大地提高数据分析的效率。

6、BI工具

BI工具是按照数据分析的流程进行设计的,商业智能的BI是为数据分析而生的,诞生起点很高,目的是为了缩短商业数据到商业决策的时间,并用数据去影响决策。

本文转载自互联网,如有侵权,联系删除